چسب لاغری اسلیم
صفحه نخست                 تماس با مدیر                    پست الکترونیک                   RSS                  ATOM
نظرات ()
نوشته شده توسط آیدا امیری در تاریخ یکشنبه 23 فروردین 1394
عنوان انگلیسی مقاله: Digital very-large-scale integration (VLSL) Hopfield neural network implementation on field programmable gate arrays (FPGA) for solving constraint satisfaction problems
عنوان فارسی مقاله: پیاده سازی شبکه عصبی هوپفیلد مجتمع سازی گسترده ی دیجیتال، در آرایه های گیت قابل برنامه ریزی میدان برای حل مسایل محدودیت رضایت.
دسته: برق و الکترونیک
فرمت فایل ترجمه شده: WORD (قابل ویرایش)
تعداد صفحات فایل ترجمه شده: 30
ترجمه ی سلیس و روان مقاله آماده ی خرید می باشد.
_______________________________________
چکیده ترجمه:
این مقاله در مورد پیاده سازی شبکه های عصبی Hopfield برای حل مسایل مربوط به محدودیت رضایت با استفاده از آرایه های گیت قابل برنامه ریزی میدان FPGA بحث می کند. این مقاله در مورد روش های فرمول بندی این مسایل همانند شبکه های عصبی گسسته بحث می کند، و سپس مساله ی N-queen را با استفاده از فرمولبندی بدست آمده تشریح می کند. سرانجام، نتایج ارایه شده زمان های محاسبه ی یک کامپیوتر معمولی برای شبیه سازی اجرای شبکه Hopfield بر روی یک فضای کاری باکیفیت، مقایسه می کنند. در این روش، رشد پیشرفت قابل مشاهده می باشد که نشان می دهد حداکثر رشد 2 تا 3 برابر دامنه _با استفاده از ابزارهای FPGA ممکن می باشد.
کلیدواژه: شبکه عصبی هوپفیلد، آرایه های گیت قابل برنامه ریزی میدان، مساله ی N-queen
مقدمه:
بسیاری از مسایل بهینه سازی تجارت و صنعت در عمل را می توان با استفاده از متغیرهای تصمیم گیری دودویی (باینری)، به عنوان مسایل برنامه نویسی استاندارد ریاضی فرمول بندی کرد. حل این مسایل _به دلیل طبیعت عصب سخت پیچیدگی آنها (NP-hard) نیاز به بکاربری از فن آوری های هوشمند و الگوریتم های تقریبی دارند؛ در سال 1985 شبکه های عصبی برای حل این مشکل ارایه شدند، اما باز هم مسایلی همچون کیفیت ضعیف راه حل ها و عدم تضمین راه حل نهایی عملی مشکل ساز بودند. این مسایل اولیه امروزه برطرف شده اند. روش هایی برای کمک به شبکه عصبی Hopfield تا حداقل عملکرد انرژی ناحیه ای را تامین کند، ارایه شده اند و ساختار مناسب این عملکرد انرژی عملی بودن راه حل را تضمین می کند. با استفاده از این پیشرفت ها، نتایج شبکه ی عصبی بدست آمده اند که بطور موثری (و حتی بهتر) با دیگر فن آوری های هوشمند معروف مانند بازپخت شبیه سازی شده، رقابت می کنند.

جهت دانلود محصول اینجا کلیک نمایید




نوع مطلب :
برچسب ها : مهندسی برق و الکترونیک، شبکه عصبی هوپفیلد، آرایه های گیت قابل برنامه ریزی میدان، مساله ی N-queen، شبکه عصبی،
لینک های مرتبط :

نظرات ()
نوشته شده توسط آیدا امیری در تاریخ دوشنبه 3 فروردین 1394
عنوان انگلیسی مقاله: A Hybrid Fuzzy-Neural Expert system For Diagnosis
عنوان فارسی مقاله: یک سیستم خبره فازی عصبی برای تشخیص.
دسته: فناوری اطلاعات و کامپیوتر
فرمت فایل ترجمه شده: WORD (قابل ویرایش)
تعداد صفحات فایل ترجمه شده: 15
ترجمه ی سلیس و روان مقاله آماده ی خرید می باشد.
_______________________________________
چکیده ترجمه:
منطق فازی،یک شبکه عصبی و سیستم خبره است که برای ایجاد یک سیستم تشخیصی ترکیبی با یکدیگر ترکیب شده اند.با استفاده از چنین سیستمی ما یک روش جدید برای فراگیری مبانی دانش استفاده می کنیم. سیستم ما شامل یک سیستم خبره فازی همراه با یک بیس دانشی با منبع دوگانه است. دو سری قوانین لازم هستند ، که به صورت استنباطی از مثالهای ارائه شده و به صورت استقرایی توسط فیزیک دانان بدست آمده اند. یک شبکه عصبی فازی سعی میکند که از داده های نمونه یاد گرفته و این اجازه را می دهد که قوانین فازی برای دانش پایه را استخراج کنیم.تشخیص electroencephalograms با تفسیر عناصر نموداری بعنوان یک نوع مشاهده در روش ما بکار گرفته می شود. نتایج اولیه نشان دهنده احتمالات مورد نظر با استفاده از روش ما می باشد.  
مقدمه:
روشهای تکراری شناسایی و ارزیابی پدیده خاص را کار تشخیصی می نامند ،که یکی از کاربردهای اصلی برای هوش مصنوعی (AI) می باشد. با توجه به اینکه رنج وسیعی از چنین کاربرهای تشخیصی وجود دارد . اگرچه رنج وسیعی از چنین کاربردهای تشخیصی در پزشکی وجود دارد ولی این بخش مورد توجه استفاده کنندگام از هوش مصنوعی قرار دارد. عمومی ترین روشهای AI در بخش پزشکی مبتنی بر دانش و مدلسازی رفتار تشخیصی متخصصان است .  انواع مختلفی از چنین سیستمهای خبره ای از زمانی که SHRTLIFFE روش SHRTLIFFE MYCIN   را بعنوان یک سیستم خبره برای تشخیص آسیبهای خونی انسان طراحی و معرفی کرد ، بوسیله پزشکان مورد استفاده قرار گرفته است. یکی از بزرگترین مشکلات بر سر راه طراحی یک سیستم خبره مناسب ، گردآوری و دانش پایه آن است. ما روش جدیدی را معرفی میکنیم که در آن دانش پایه با منبع دوگانه بوسیله یادگیری قیاسی واستقرایی ایجاد می شود. شیکه های عصبی نیز از این راه برای تشخیص استفاده میکنند . آنها قادرند رابطه بین مجموعه داده ها را با داشتن اطلاعات نمونه که نشاندهنده لایه های ورودی و خروجی آنها است ،یاد بگیرند. 

جهت دانلود محصول اینجا کلیک نمایید




نوع مطلب :
برچسب ها : یک سیستم خبره فازی عصبی برای تشخیص، فناوری اطلاعات و کامپیوتر، منطق فازی، شبکه عصبی، سیستم خبره،
لینک های مرتبط :



درباره وبلاگ




مدیر وبلاگ : آیدا امیری
موضوعات
مطالب اخیر
نویسندگان
پیوندها
آمار وبلاگ
  • کل بازدید :
  • بازدید امروز :
  • بازدید دیروز :
  • بازدید این ماه :
  • بازدید ماه قبل :
  • تعداد نویسندگان :
  • تعداد کل پست ها :
  • آخرین بازدید :
  • آخرین بروز رسانی :
 
   
شبکه اجتماعی فارسی کلوب | Buy Website Traffic | Buy Targeted Website Traffic